Initial Testing Results

Kailey Lewis

Jesse Wells

Hallie Eha

Design Requirements

Customer Requirements

CR 1: Safety

CR 2: Towability

CR 3: Durability

CR 4: Portability

CR 5: Rope length fits competition area

CR 6: sufficient power

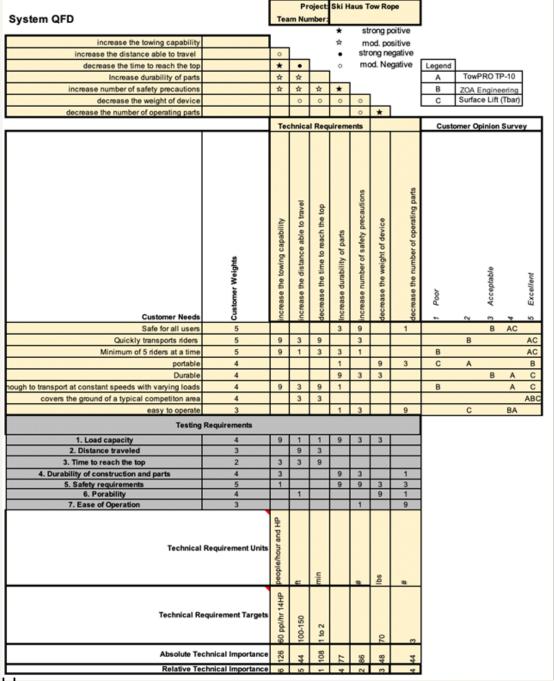
CR 7: Compact design

Engineering Requirements

ER 1: Tows 10 people

ER 2: Travels at about 2 m/s (60 people/hour)

ER 3: rope length of 200-300 ft


ER 4: weight of 300lbs +/- 50 lbs

ER 5: 2-3 safety features

ER 6: factor of safety of 3

ER 7: durable material properties

QFD

Top Level Testing Plan

Experiment/Test	Relevant DR's
Load capacity	CR2, CR3, CR5, CR6, CR8, ER1, ER2
Speed and time to reach the top	CR5, CR6, ER1, ER2, ER3
Durability of construction and parts	CR1, CR3, CR4, CR7, ER4, ER5, ER6, ER7
Safety requirements	CR1, CR3, CR6, CR8, CR9, ER5, ER6, ER7
Portability Portability Portability Portability	CR3, CR4, CR7, CR8, ER4, ER7

Detailed Testing Plan:

Portability

Summary:

- The test for portability will determine if the device can be transported both in a truck bed and on the mountain
- These tests will analyze CR3, CR4, CR7, CR8, ER4, and ER7. With one of the customer requirements is that no more than 300 pounds or the equivalent of 3-4 people being able to carry it.
- It must also be able to be lifted and transported in the back of a standard truck bed.
- During testing, if all parts stay intact and are transported well, the device will be lifted out of the truck bed and placed on the ground.
- The calculations will be based upon the total combined weight of the system.

Portability: Procedure

- 1. Weigh the three components: drive unit, rope spool, and top pulley.
- 2. Measure the dimensions of a standard truck bed to ensure tow rope fits
- 3. Prep the tow rope for travel (attach wheels and proper handles tie down to truck bed)
- 4. Measure the time that it takes for 3-4 people to load the tow rope into a bed of a truck
- 5. Measure the time that it takes for 3-4 people to unload the tow rope out of the truck bed
- 6. Now measure the time it takes to bring the tow rope up to the competition area via a snowmobile
- 7. Complete these time measurements several times to determine the fastest method of transporting the tow rope

Portability: Results

Weight Results

$$W_{Total} = \sum W_{Rope} + W_{Top Pulley} + W_{Engine} + W_{Drive Unit} \le 300 lbs.$$

Component	Weight (+/- 1 lb)		
Engine	75 lbs		
Drive unit frame	35 lbs		
Drive unit components	55 lbs		
Top pulley	25 lbs		
Rope (including spool)	101 lbs		
Total Weight	291 lbs		

Area Results

 $A=L\times W$

A _{Spool}=
$$\pi r^2$$
= $\pi (122)$ =452.39 in²

A $_{Total} = \sum A_{Spool} + A_{Drive\ Unit} + A_{Top\ Pulley} \le A_{Truck\ Bed}$ Area of F150 short bed (client's truck) = **4858** in²

Component	Area (+/- 1")		
Rope spool	452.39 in^2		
Drive unit + Top Pulley	756 in^2		
Total Area	1208.39 in^2		

Alternative Area Result

Frame + Top Pulley = 27" x 28"

Rope spool diameter = 24"

Truck bed dimensions = 77.75" x 62.49"

Components Loaded = $52" \times 28"$

Jesse Wells 4/4/2022 - Ski Haus Tow Rope - 21F09_SkiHaus

Detailed Testing Plan:

Speed and time to reach the top

Summary:

- This test is to determine how long it takes to reach the top
- The distance will be determined by the length of the rope in which the team splices. The test will focus on CR5, CR6, ER1, ER2, and ER3.
- To perform this test, the entire tow rope will need to be set up on an inclined surfaced will all equipment running
- The isolated variables are the rope and engine for this test as it will be evaluating the length and speed for moving 60+ people per hour.
- The calculations to be made from this test are the overall speed of the rope.

Speed and time to reach the top: Procedure

- 1. Set up the drive unit, top pulley, and rope for extended use.
- 2. Measure the length of the rope once set up to evaluate the total distance able to be traveled
- 3. Have one person ride the rope while timing to see how fast they reach the top
- 4. Fully load the tow rope and have people continuously use the rope for an hour
- 5. Keep track of how many people have traveled the full length of the rope after an hour

Results

Drive Shaft Ø2. 45 " pulley to Shaft 1 Ø6. 25 " pulley:

$$VR = \frac{6.25}{2.45} = 2.5510$$

$$OS = \frac{3600 \ RPM}{2.5510} = 1411.2 \ RPM$$

Shaft 1 Ø6. 25 " pulley velocity = Shaft 1 Ø2. 45 " pulley velocity

Shaft 1 Ø2.45 " pulley to Shaft 2 Ø6.25 " pulley:

$$VR = \frac{6.25}{2.45} = 2.5510$$

$$OS = \frac{1411.2 \ RPM}{2.5510} = 553.19 \ RPM$$

Shaft 2 ø6. 25 " pulley velocity = Shaft 2 ø2, 45 " pulley velocity

Shaft 2 ø2.45 " pulley to Shaft 3 ø6.25 " pulley:

$$VR = \frac{6.25}{2.45} = 2.5510$$

$$OS = \frac{553.19 \ RPM}{2.5510} = 216.85 \ RPM$$

1:1 Ratio gearbox attached to Shaft 3 and Vertical Shaft 1

:. Shaft 3 velocity = Vertical Shaft 1 Velocity

Driving Sheave fixed to Vertical Shaft 1

:. Driving Sheave angular velocity = 216.85 RPM

Converting angular velocity to linear velocity of Driving Sheave Driving Sheave radius = 3 inches = 0.0762 meters

$$V_{Linear} = \frac{215.85 \ RPM}{60 \ s} \times 2\pi \times 0.0762 \ m = 1.73 \ \frac{m}{s}$$

Driving Sheave linear velocity = Rope velocity = 1.73
$$\frac{m}{s}$$

Test	Time (s)		
Test 1	1.68		
Test 2	1.88		
Test 3	1.81		
Average	1.79		

Kailey Lewis 4/4/2022 - Ski Haus Tow Rope - 21F09_SkiHaus

Specification Sheet Preparation

Customer Requirement	CR met? (√ or X)	Client Acceptable? (√ or X)
CR3 - Durable	✓	✓
CR4 - Portable	\checkmark	✓
CR5 - length of rail jam competition	X	X
CR6 - constant speed w/ varying loads	X	X
CR7 - compact design	√	\checkmark
CR8 - internal combustion engine	\checkmark	✓

Engineering Requirement	Target	Tolerance	Measured/Calculated value	ER met? (√ or X)	Client acceptable? (√ or X)
ER1 -people on the rope	8 people	+/- 2 people	1 person	X	X
ER2 - people/ hour travel	60 people/hour or 1.66 m/s	+/- 10 people	1.73 m/s	✓	✓
ER3 - distance traveled	250 ft	+/- 50 feet	22.75 ft	x	x
ER4 - weight of unit	300 lbs.	+/- 50 lbs.	291 lbs.	✓	✓
ER7 - material durability	250 MPa	+/-50 Mpa	276 Mpa	✓	✓

Hallie Eha 4/4/2022 - Ski Haus Tow Rope - 21F09_SkiHaus

It Pulls!

Kailey Lewis 4/4/2022 - Ski Haus Tow Rope - 21F09_SkiHaus